
PROTECT YOUR
GraphQL API

Benjie Gillam, GraphQL TSC

PROTECT YOUR
GraphQL API

Benjie Gillam, GraphQL TSC

“Skippy” the frog: read later!

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
● Nulla quis semper diam
● Vivamus laoreet turpis eu euismod semper
● In non tempus arcu
● Nullam dapibus diam tincidunt egestas vehicula

Nunc vitae arcu eu lacus iaculis fermentum.
Maecenas tempor, mi vel posuere bibendum, tellus ipsum iaculis lacus, a
fringilla orci nisl euismod tellus.
Integer egestas dolor eget suscipit aliquam.
Nunc vitae arcu eu lacus iaculis fermentum.
In hac habitasse platea dictumst. Nam commodo neque in tellus molestie
commodo. Praesent id nibh ut nunc pretium semper eu non neque. Morbi
auctor massa libero, sed luctus odio efficitur eu. Phasellus purus nunc,
ultrices non libero sit amet, porttitor interdum lorem. Nullam lorem sapien,
pretium et purus in, scelerisque hendrerit sapien. Mauris ac justo
consectetur, egestas leo at, aliquet nulla. Fusce suscipit ipsum ac lacus
vulputate, sit amet convallis nibh pulvinar. Vivamus elementum
elementum dapibus. Morbi ut arcu tempor, imperdiet est sed, fringilla eros.

Slides

In-memory API concerns
Consumed only by your own application code in a privileged context.
Regular application code concerns:

- Limit access paths
- Pass through authorization context
- Auditing
- Caching
- Be careful handling external APIs (e.g. error messages)
- Apply rate limiting / brute-force protection
- Consider circuit breakers

({ schema, operation, variables }) → { data, errors }

GraphQL as a function call

IN
-M

EM
O

RY

NETWORKED
1st PARTY ONLY CONSUMER
APP-FOCUSED

Public

Admin

Partner

SPA API

B2B

Microservice

Chat widget
CMS

Subgraph
Internal API

BFF API
Mobile app APIs

B2C

SaaS

APIs

PERSISTENCE
LAYER

GraphQL

BUSINESS
LOGIC

INTERNET
WAN

INTERNET
WAN

parse
validate
execute

WEBSERVER

CONCERNS

INTERNET
WAN

WEBSERVER

General HTTP concerns

Firewalls / private subnets / VPC / IP allowlisting
HTTPS Encryption
Request origin validation / CSRF (SameSite cookies / X-CSRF-Token)
Can you trust the proxy? (beware X-Forwarded-For / etc. spoofing)
Authentication

- Require all requests are authenticated?
- Scoped access / routing
- Beware session fixation attacks/long expiration/insecure token storage/etc

Auditing/tracing (including X-Request-ID)
Limit request size
Limit request duration and ensure cancellation on timeout
Avoiding over- and under-fetching
Rate limiting
Circuit break patterns
Protect other endpoints on your API host to avoid clickjacking/XSS/CSRF/phishing/etc
Disable proxy caching of sensitive data (Cache-Control / Pragma / etc)

GraphQL HTTP concern:

multipart/form-data and
application/x-form-data-url-encoded
bypass CORS preflight requests.

evil.com can make a request using your cookies!

Forbid these media types
Or: use a custom header,
e.g. GraphQL-Require-Preflight

CSRF (cross-site request forgery)

GraphQL HTTP concern:
batch requests

Circumvents HTTP-level rate limits.
Potential brute-force vulnerability.

[{"query":"mutation($u:String!){login(username:$u,pin:"0000")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0001")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0002")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0003")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0004")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0005")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0006")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0007")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0008")}"}
,{"query":"mutation($u:String!){login(username:$u,pin:"0009")}"}

Rate limits should factor in batch size.

GraphQL HTTP concern:
GraphQL Bombs

Servers supporting multipart/form-data may be vulnerable to
massive memory usage.

See “GraphQL Security Vulnerabilities in the Wild” by Escape.tech.

Either don't allow multipart/form-data or don't allow file uploads

Or place limits on the number of times a file-upload can be referenced:

● Webserver: don't allow batching when there are file uploads

● Schema design: don't allow file uploads anywhere inside of list fields

● Validation: don't allow a file upload variable to be referenced multiple times

GraphQL HTTP concern:
GraphQL Bombs

PERSISTENCE
LAYER

BUSINESS
LOGIC

CONCERNS

BUSINESS
LOGIC

General business logic concerns

Enforce authorization scopes (e.g. OAuth/etc)
Avoid injection attacks (e.g. SQL injection)
Implement input validation / sanitization
Where appropriate, use output masking to avoid leaking private data
Avoid remote code execution (RCE) vulnerabilities
Ensure dangerous operations produce an audit trail
Flag unfamiliar usage patterns / detect bad behaviors
● Track actor: which application? which user? X-Request-ID?
● Track error rates / request times / stability issues
● Pro-active blocking / use the breaker pattern (per-user,

per-application, or globally)

Avoiding DOS: efficiency is key

Denial of Service (DOS) attacks often try and make servers perform
disproportionately more work than clients. Ensuring servers are
efficient helps make this more challenging to attack.

Use a cancellation token to cancel all executing business logic when a
request terminates.

Avoid N+1 using batched execution

GraphQL's execution model, via resolvers, can lead to an explosion of
requests to your business logic or persistence layers.

Use batching (e.g. via DataLoader) to turn hundreds of
userById(id) calls into a single usersByIds(ids) batched call
which can be executed more efficiently.

Advanced GraphQL implementations such as bake batching
into the system's design so you never need to concern yourself with the
N+1 problem.

Avoid over- and under-fetching
server-side

Ensure your business logic is optimized to reduce round trips to the
persistence layer.

BUSINESS
LOGIC CALL

PERSISTENCE
LAYER CALL

Pagination concerns

Limit/offset pagination is fairly standard; but offset:1000000
means a million rows must be executed before retrieving the rows you
want.

Place reasonable limits on offsets.

Use cursor pagination; the cursor can be used as a predicate allowing
the persistence layer to jump straight to the relevant records using
indexes - no row-skipping required.

LAYER

GraphQL
parse

validate
execute

GraphQL
parse

validate
execute

Protect app-focused APIs with a document allow list

Handling Malicious
Queries

Dynamic query (string interpolation)
Potentially infinite documents issued to server.
Server must validate each new document.
Hard to analyze/lint.
Cannot easily validate; needs thorough testing.
Vulnerable to GraphQL injection.

Reusable document, give variables at runtime.
Syntax highlighting, linting, auto-complete.
Not vulnerable to GraphQL injection.
Validate once, no need to re-check.
Supports "persisted queries" pattern.
Can check validity at build time.
Easy to track which fields are used.
Server can optimize known queries.

Use static queries
query = "query GetUser { user(id: "
 + userId
 + ") { name"
if (showAvatar) {
 query += " avatarUrl"
}
query += " } }"

query = "
 query GetUser(
 $userId: Int!
 $showAvatar: Boolean! = false
) {
 user(id: $userId) {
 name
 avatarUrl @include(if: $showAvatar)
 }
 }
"
variables = { userId, showAvatar }

Static query (separate variables)

Persisted
Stored

Queries
Operations
Documents

Persisted queries

Client
Before client deploy:
● Extract all GraphQL operations

Server
Before client deploy (example):
● Receive document from client
● Generate identifier, store id &

document
● Return identifier to client

● Negotiate identifier with server
● Store identifier

On GraphQL request send:
● Issue identifier to server,

not document

On GraphQL request received:
● Look up document by identifier
● If no doc found, reject request

(allowlist); or handle as desired
● Continue to execution as normal

{

 variableValues: {…},
 operationName: "Q"
}

Support

Wide-spread client and server support

 query: "query Q …",

{

 variableValues: {…},
 operationName: "Q"
}

Support

Wide-spread client and server support

 id: "sha256:…",

Support

{
 id: "sha256:…",
 variableValues: {…},
 operationName: "Q"
}

{
 query: "query Q …",
 variableValues: {…},
 operationName: "Q"
}

Wide-spread client and server support

Can act as document allow-list

Optimize network

Validate at build time

A little effort to set up

Official specification (WIP)

Persisted queries

Custom URLs /graphql/p/:hash/:name

Easier tooling integration

Better caching

Better tracing

Easier debugging

Allow any GraphQL query

Automatic persisted queries (APQ)

Trusted documents:
persisted queries + trust

Trust the process:

Trusted developer wrote the document

Trusted review process (pull requests)

Trusted CI checks (gqlcheck or similar)

Trusted retrieval of document from server

If you can trust your documents, there's no need for expensive run-time
validation.

Protect consumer APIs with advanced validation

Handling Malicious
Queries

(Also useful during development for any GraphQL API, even local!)

{
 item(id: $id) {
 position {
 shelf {
 aisle {
 store {
 localGroup {
 nationalGroup {
 conglomerate {
 headquarters {
 legalJurisdiction {
 headOfGovernment {
 name
 }}}}}}}}}}}}

Depth limit

Request waterfall

List depth limit

{
 allFilms(first: 100) {
 cast {
 children {
 films {
 crew {
 name
 }}}}}}

100
100 * 100

100 * 100 * 2
100 * 100 * 2 * 20

100 * 100 * 2 * 20 * 100

40m+ nodes evaluated

Self-referential limits

type Actor {
 id: ID!
 name: String!
 appearances: [Appearance!]
}

type Appearance {
 film: Film
 actor: Actor
}

Self-referential limits

{
 father {
 father {
 father {
 father {
 father {
 father {
 name
 }}}}}}}

genealogy.site

{
 friends {
 friends {
 friends {
 friends {
 friends {
 friends {
 name
 }}}}}}

friends.site

Introspection depth limits

Limits must be introspection-aware, or tooling may break.

{
 ofType {
 ofType {
 ofType {
 …

{
 interfaces {
 possibleTypes {
 interfaces {
 possibleTypes {
 interfaces {
 …

Allow Block

Alias limits

{
 a1:avatar(size:1)
 a2:avatar(size:2)
 a3:avatar(size:3)
 a4:avatar(size:4)
 a5:avatar(size:5)
 a6:avatar(size:6)
 a7:avatar(size:7)
 a8:avatar(size:8)
 a9:avatar(size:9)

Apply sensible alias limits to protect against server overload.

Alias limits

Attackers can bypass HTTP rate limits with brute force.

Protect from this in the business logic layer:

Use sensible limits on number of aliases; allow overriding on per-field basis.

mutation ($u: String!) {
 m0:login(username:$u,pin:"0000")
 m1:login(username:$u,pin:"0001")
 m2:login(username:$u,pin:"0002")
 m3:login(username:$u,pin:"0003")
 m4:login(username:$u,pin:"0004")
 m5:login(username:$u,pin:"0005")
 m6:login(username:$u,pin:"0006")
 m7:login(username:$u,pin:"0007")

Alias limits

Beware large selection sets even with low limit:

{
 u1: viewer { ... HugeFragment }

}

fragment HugeFragment on User {
 …
}

u2: viewer { ... HugeFragment }

Custom Per-Document Validation

Depth limit
List depth limit

Self-referential limits
Introspection limits

Alias limits

Trust your devs,

or validate at development time.

Extra runtime validation rules required.

Migration cost when rules change.

Limit number of errors from validation (e.g. max: 5)
{"errors":[{"message":
 "Too many validation errors, error limit reached.
Validation aborted."
}]}

Validation is an attack vector
Ten thousand spoons → ten thousand errors.
{ spoon spoon spoon spoon … spoon spoon spoon }

No action needed.

Validation needs to be
able to abort once error
limit is reached.

Prevent attackers from
discovering your sensitive fields

Disable introspection
via validation

Authorization

Avoid brute-forcing:
Limit/stop validation errors

Avoid dictionary attacks:
use “unguessable names”

Avoid guessing:
disable “did you mean”

Prevent attackers from
executing your sensitive fields

Authorization

Disable introspection
via validation

Avoid brute-forcing:
Limit/stop validation errors

Avoid dictionary attacks:
use “unguessable names”

Avoid guessing:
disable “did you mean”

Schema design: avoiding
information disclosure

Protect your privileged fields with authorization checks.

Only add necessary and safe fields to your schema.

Consider using a separate schema for different use-cases
(e.g. a separate Admin API).

Schema design:
focus on efficiency

● use cursor pagination
● don't expose complex filters

○ only expose necessary filters
○ use simple arguments, not big filter objects

● enforce pagination limits
● avoid totalCount unless you need it

Never treat your schema
as a secret.
Care MUST be taken.

Disabling introspection: a red flag?
🚩

Don't try and hide things through introspection, it's just security
through obscurity.

Public APIs may choose to publish the SDL and disable introspection to
protect against introspection attacks.

Document allow list:
No need to disable
introspection

Using holistic rule checks

Handling Malicious
Requests

If the limits are hard-coded, no runtime checks are needed.

Pagination limits

Should be implemented in resolvers/business-logic.

Even better as a validation rule: abort pre-execution on disallowed
limits.

Query cost + complexity analysis

Attackers can form highly complex requests in small documents.

Attackers can also build very large and time-consuming to execute/validate documents.

Check out IBM's GraphQL Cost Directives Specification
ibm.github.io/graphql-specs/

Factor into rate limiting: allow loads of simple queries, or just a few complex queries -
ensure load from a single user is balanced across the needs of all users.

Query cost analysis not needed;
Can act as guardrails.

RUNTIME ERRORS

Error masking

- Replace all errors with generic errors by default

- Donʼt reveal implementation details
- Donʼt reveal error codes
- Donʼt expose stack traces!

- No need to mask known-safe errors e.g. some data validation errors

NEW
IMPROVED

TRUST!

Trusted document security tips

Careful query design - only request what you need.

No unbounded pagination!

Be careful with variables.

first: $first

use either different docs, or hardcode
limits into API or document

filter: $filter

instead use

filter: {
 users: {
 id: {
 greaterThan: $var
} } }

Trusted document security tips

Careful query design - only request what you need.

No unbounded pagination!

Be careful with variables.

Still validate your documents; e.g. using gqlcheck:

- Can add exceptions on a per-document, per-coordinate basis.

- Supports a “baseline” where you can import all existing documents as valid.

Trusted docs, including incorporating into existing projects:
benjie.dev/graphql/trusted-documents

Protecting against malicious queries:
the-guild.dev/graphql/envelop/v3/guides/securing-your-graphql-api
npmjs.com/package/gqlcheck

OWASP security cheatsheet:
cheatsheetseries.owasp.org/cheatsheets/GraphQL_Cheat_Sheet.html

Error masking: the-guild.dev/graphql/yoga-server/docs/features/error-masking

GraphQL bombs:
escape.tech/blog/forging-graphql-bombs-the-2022-version-of-zip-bombs/

And remember: Trusted Documents: if you can, you should!

Slides

